datamatrix.operations
A set of operations to apply to columns and DataMatrix
objects.
- function auto_type(dm)
- function bin_split(col, bins)
- function fullfactorial(dm, ignore=u'')
- function group(dm, by)
- function keep_only(dm, *cols)
- function replace(col, mappings={})
- function shuffle(obj)
- function shuffle_horiz(*obj)
- function sort(obj, by=None)
- function split(col, *values)
- function weight(col)
- function z(col)
function auto_type(dm)
Requires fastnumbers
Converts all columns of type MixedColumn to IntColumn if all values are integer numbers, or FloatColumn if all values are non-integer numbes.
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=5)
dm.A = 'a'
dm.B = 1
dm.C = 1.1
dm_new = operations.auto_type(dm)
print('dm_new.A: %s' % type(dm_new.A))
print('dm_new.B: %s' % type(dm_new.B))
print('dm_new.C: %s' % type(dm_new.C))
Output:
dm_new.A: <class 'datamatrix._datamatrix._mixedcolumn.MixedColumn'>
dm_new.B: <class 'datamatrix._datamatrix._numericcolumn.IntColumn'>
dm_new.C: <class 'datamatrix._datamatrix._numericcolumn.FloatColumn'>
Arguments:
dm
-- No description- Type: DataMatrix
Returns:
No description
- Type: DataMatrix
function bin_split(col, bins)
Splits a DataMatrix into bins; that is, the DataMatrix is first sorted by a column, and then split into equal-size (or roughly equal-size) bins.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=5)
dm.A = 1, 0, 3, 2, 4
dm.B = 'a', 'b', 'c', 'd', 'e'
for bin, dm in enumerate(operations.bin_split(dm.A, bins=3)):
print('bin %d' % bin)
print(dm)
Output:
bin 0
+---+---+---+
| # | A | B |
+---+---+---+
| 1 | 0 | b |
+---+---+---+
bin 1
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | 1 | a |
| 3 | 2 | d |
+---+---+---+
bin 2
+---+---+---+
| # | A | B |
+---+---+---+
| 2 | 3 | c |
| 4 | 4 | e |
+---+---+---+
Arguments:
col
-- The column to split by.- Type: BaseColumn
bins
-- The number of bins.- Type: int
Returns:
A generator that iterates over the bins.
function fullfactorial(dm, ignore=u'')
Requires numpy
Creates a new DataMatrix that uses a specified DataMatrix as the base of a full-factorial design. That is, each value of every row is combined with each value from every other row. For example:
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=2)
dm.A = 'x', 'y'
dm.B = 3, 4
dm = operations.fullfactorial(dm)
print(dm)
Output:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | x | 3 |
| 1 | y | 3 |
| 2 | x | 4 |
| 3 | y | 4 |
+---+---+---+
Arguments:
dm
-- The source DataMatrix.- Type: DataMatrix
Keywords:
ignore
-- A value that should be ignored.- Default: ''
function group(dm, by)
Requires numpy
Groups the DataMatrix by unique values in a set of grouping columns. Grouped columns are stored as SeriesColumns. The columns that are grouped should contain numeric values. The order in which groups appear in the grouped DataMatrix is unpredictable.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=4)
dm.A = 'x', 'x', 'y', 'y'
dm.B = 0, 1, 2, 3
print('Original:')
print(dm)
dm = operations.group(dm, by=dm.A)
print('Grouped by A:')
print(dm)
Output:
Original:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | x | 0 |
| 1 | x | 1 |
| 2 | y | 2 |
| 3 | y | 3 |
+---+---+---+
Grouped by A:
+---+---+---------+
| # | A | B |
+---+---+---------+
| 0 | x | [0. 1.] |
| 1 | y | [2. 3.] |
+---+---+---------+
Arguments:
dm
-- The DataMatrix to group.- Type: DataMatrix
by
-- A column or list of columns to group by.- Type: BaseColumn, list
Returns:
A grouped DataMatrix.
- Type: DataMatrix
function keep_only(dm, *cols)
Removes all columns from the DataMatrix, except those listed in cols
.
Example:
from datamatrix import DataMatrix, operations as ops
dm = DataMatrix(length=5)
dm.A = 'a', 'b', 'c', 'd', 'e'
dm.B = range(5)
dm.C = range(5, 10)
dm_new = ops.keep_only(dm, dm.A, dm.C)
print(dm_new)
Output:
+---+---+---+
| # | A | C |
+---+---+---+
| 0 | a | 5 |
| 1 | b | 6 |
| 2 | c | 7 |
| 3 | d | 8 |
| 4 | e | 9 |
+---+---+---+
Arguments:
dm
-- No description- Type: DataMatrix
Argument list:
*cols
: A list of column names, or column objects.
function replace(col, mappings={})
Replaces values in a column by other values.
Example:
from datamatrix import DataMatrix, operations as ops
dm = DataMatrix(length=3)
dm.old = 0, 1, 2
dm.new = ops.replace(dm.old, {0 : 'a', 2 : 'c'})
print(dm_new)
Output:
+---+---+---+
| # | A | C |
+---+---+---+
| 0 | a | 5 |
| 1 | b | 6 |
| 2 | c | 7 |
| 3 | d | 8 |
| 4 | e | 9 |
+---+---+---+
Arguments:
col
-- The column to weight by.- Type: BaseColumn
Keywords:
mappings
-- A dict where old values are keys and new values are values.- Type: dict
- Default: {}
function shuffle(obj)
Shuffles a DataMatrix or a column. If a DataMatrix is shuffled, the order of the rows is shuffled, but values that were in the same row will stay in the same row.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=5)
dm.A = 'a', 'b', 'c', 'd', 'e'
dm.B = operations.shuffle(dm.A)
print(dm)
Output:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | a | b |
| 1 | b | a |
| 2 | c | d |
| 3 | d | c |
| 4 | e | e |
+---+---+---+
Arguments:
obj
-- No description- Type: DataMatrix, BaseColumn
Returns:
The shuffled DataMatrix or column.
- Type: DataMatrix, BaseColumn
function shuffle_horiz(*obj)
Shuffles a DataMatrix, or several columns from a DataMatrix, horizontally. That is, the values are shuffled between columns from the same row.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=5)
dm.A = 'a', 'b', 'c', 'd', 'e'
dm.B = range(5)
dm = operations.shuffle_horiz(dm.A, dm.B)
print(dm)
Output:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | 0 | a |
| 1 | b | 1 |
| 2 | c | 2 |
| 3 | d | 3 |
| 4 | e | 4 |
+---+---+---+
Argument list:
*desc
: A list of BaseColumns, or a single DataMatrix.*obj
: No description.
Returns:
The shuffled DataMatrix.
- Type: DataMatrix
function sort(obj, by=None)
Sorts a column or DataMatrix. In the case of a DataMatrix, a column must be specified to determine the sort order. In the case of a column, this needs to be specified if the column should be sorted by another column.
The sort order is as follows:
-INF
int
andfloat
values in increasing orderINF
str
values in alphabetical order, where uppercase letters come firstNone
NAN
You can also sort columns (but not DataMatrix objects) using the
built-in sorted()
function. However, when sorting different mixed
types, this may lead to Exceptions or (in the case of NAN
values)
unpredictable results.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=3)
dm.A = 2, 0, 1
dm.B = 'a', 'b', 'c'
dm = operations.sort(dm, by=dm.A)
print(dm)
Output:
+---+---+---+
| # | A | B |
+---+---+---+
| 1 | 0 | b |
| 2 | 1 | c |
| 0 | 2 | a |
+---+---+---+
Arguments:
obj
-- No description- Type: DataMatrix, BaseColumn
Keywords:
by
-- The sort key, that is, the column that is used for sorting the DataMatrix, or the other column.- Type: BaseColumn
- Default: None
Returns:
The sorted DataMatrix, or the sorted column.
- Type: DataMatrix, BaseColumn
function split(col, *values)
Splits a DataMatrix by unique values in a column.
Example:
from datamatrix import DataMatrix, operations as ops
dm = DataMatrix(length=4)
dm.A = 0, 0, 1, 1
dm.B = 'a', 'b', 'c', 'd'
# If no values are specified, a (value, DataMatrix) iterator is
# returned.
for A, dm in ops.split(dm.A):
print('dm.A = %s' % A)
print(dm)
# If values are specific an iterator over DataMatrix objects is
# returned.
dm_a, dm_c = ops.split(dm.B, 'a', 'c')
print('dm.B == "a"')
print(dm_a)
print('dm.B == "c"')
print(dm_c)
Output:
dm.A = 0
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | 0 | a |
| 1 | 0 | b |
+---+---+---+
dm.A = 1
+---+---+---+
| # | A | B |
+---+---+---+
| 2 | 1 | c |
| 3 | 1 | d |
+---+---+---+
dm.B == "a"
+---+---+---+
| # | A | B |
+---+---+---+
+---+---+---+
dm.B == "c"
+---+---+---+
| # | A | B |
+---+---+---+
| 2 | 1 | c |
+---+---+---+
Arguments:
col
-- The column to split by.- Type: BaseColumn
Argument list:
*values
: Splits the DataMatrix based on these values. If this is provided, an iterator over DataMatrix objects is returned, rather than an iterator over (value, DataMatrix) tuples.
Returns:
A iterator over (value, DataMatrix) tuples if no values are provided; an iterator over DataMatrix objects if values are provided.
- Type: Iterator
function weight(col)
Weights a DataMatrix by a column. That is, each row from a DataMatrix is repeated as many times as the value in the weighting column.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=3)
dm.A = 1, 2, 0
dm.B = 'x', 'y', 'z'
print('Original:')
print(dm)
dm = operations.weight(dm.A)
print('Weighted by A:')
print(dm)
Output:
Original:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | 1 | x |
| 1 | 2 | y |
| 2 | 0 | z |
+---+---+---+
Weighted by A:
+---+---+---+
| # | A | B |
+---+---+---+
| 0 | 1 | x |
| 1 | 2 | y |
| 2 | 2 | y |
+---+---+---+
Arguments:
col
-- The column to weight by.- Type: BaseColumn
Returns:
No description
- Type: DataMatrix
function z(col)
Transforms a column into z scores.
Example:
from datamatrix import DataMatrix, operations
dm = DataMatrix(length=5)
dm.col = range(5)
dm.z = operations.z(dm.col)
print(dm)
Output:
+---+-----+---------------------+
| # | col | z |
+---+-----+---------------------+
| 0 | 0 | -1.2649110640673518 |
| 1 | 1 | -0.6324555320336759 |
| 2 | 2 | 0.0 |
| 3 | 3 | 0.6324555320336759 |
| 4 | 4 | 1.2649110640673518 |
+---+-----+---------------------+
Arguments:
col
-- The column to transform.- Type: BaseColumn
Returns:
No description
- Type: BaseColumn